Part Number Hot Search : 
N4001 AF4502C TN5125 100CT TK11231A 4STRL 702SA R0100
Product Description
Full Text Search
 

To Download APT40GF120JRDQ2 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  052-6285 rev b 5-2006 APT40GF120JRDQ2 typical performance curves the fast igbt is a new generation of high voltage power igbts. using non-punch through technology, the fast igbt combined with an microsemi free wheeling ultra fast recovery epitaxial diode (fred) offers superior ruggedness and fast switching speed. ? low forward voltage drop ? high freq. switching to 20khz ? rbsoa and scsoa rated ? ultra low leakage current ? ultrafast soft recovery anti-parallel diode ? intergrated gate resistor: low emi, high reliability fast igbt & fred sot-227 isotop ? file # e145592 "ul recognized" g e e c c e g 1200v APT40GF120JRDQ2 maximum ratings all ratings: t c = 25c unless otherwise speci?ed. static electrical characteristics characteristic / test conditionscollector-emitter breakdown voltage (v ge = 0v, i c = 500a) gate threshold voltage (v ce = v ge , i c = 700a, t j = 25c) collector-emitter on voltage (v ge = 15v, i c = 50a, t j = 25c) collector-emitter on voltage (v ge = 15v, i c = 50a, t j = 125c) collector cut-off current (v ce = 1200v, v ge = 0v, t j = 25c) 2 collector cut-off current (v ce = 1200v, v ge = 0v, t j = 125c) 2 gate-emitter leakage current (v ge = 20v) intergrated gate resistor symbol v (br)ces v ge(th) v ce(on) i ces i ges r g(int) units volts ana ? symbol v ces v ge i c1 i c2 i cm ssoa p d t j ,t stg APT40GF120JRDQ2 1200 30 8042 150 150a @ 1200v 347 -55 to 150 unit volts ampswatts c parametercollector-emitter voltage gate-emitter voltage continuous collector current @ t c = 25c continuous collector current @ t c = 100c pulsed collector current 1 switching safe operating area @ t j = 150c total power dissipationoperating and storage junction temperature range caution: these devices are sensitive to electrostatic discharge. proper hand ling procedures should be followed. min typ max 1200 4.5 5.5 6.5 2.5 3.0 3.1 200 1500 100 5 microsemi website - http://www.microsemi.com downloaded from: http:///
052-6285 rev b 5-2006 APT40GF120JRDQ2 dynamic characteristics symbol c ies c oes c res v gep q g q ge q gc ssoa t d(on) t r t d(off) t f e on1 e on2 e off t d(on) t r t d(off) t f e on1 e on2 e off test conditions capacitance v ge = 0v, v ce = 25v f = 1 mhz gate charge v ge = 15v v ce = 600v i c = 50a t j = 150c, r g = 1.0 ?, 7 v ge = 15v, l = 100h,v ce = 1200v inductive switching (25c) v cc = 800v v ge = 15v i c = 50a r g = 1.0 ? 7 t j = +25c inductive switching (125c) v cc = 800v v ge = 15v i c = 50a r g = 1.0 ? 7 t j = +125c characteristicinput capacitance output capacitance reverse transfer capacitance gate-to-emitter plateau voltage total gate charge 3 gate-emitter charge gate-collector ("miller ") charge switching safe operating area turn-on delay time current rise time turn-off delay time current fall time turn-on switching energy 4 turn-on switching energy (withdiode) 5 turn-off switching energy 6 turn-on delay timecurrent rise time turn-off delay time current fall time turn-on switching energy 4 4 turn-on switching energy (withdiode) 5 5 turn-off switching energy 6 min typ max 3460 385 225 9.5 340 30 205 150 25 43 260 70 3600 4675 2640 25 43 300 95 3750 6400 3400 unit pf v nc a ns j ns j 1 repetitive rating: pulse width limited by maximum junction temperature. 2 for combi devices, i ces includes both igbt and diode leakages 3 see mil-std-750 method 3471. 4 e on1 is the clamped inductive turn-on energy of the igbt only, without the effect of a commutating diode reverse recovery current adding to the igbt turn-on loss. tested in inductive switching test circuit shown in ?gure 21, but with a silicon carbide diode.5 e on2 is the clamped inductive turn-on energy that includes a commutating diode reverse recovery current in the igbt turn-on switching loss. (see figures 21, 22.) 6 e off is the clamped inductive turn-off energy measured in accordance with jedec standard jesd24-1. (see figures 21, 23.) 7 r g is external gate resistance, not including r g(int) nor gate driver impedance. (mic4452) mircosemi reserves the right to change, without notice, the speci?cations and information contained herein . thermal and mechanical characteristics unit c/w volts oz gm ib?in n?m min typ max 0.36 1.1 2500 1.03 29.2 10 1.1 characteristicjunction to case (igbt) junction to case (diode) rms voltage ( 50-60hz sinusoidal waveform from terminals to mounting base for 1 min.) package weightmaximum terminal & mounting torque symbol r jc r jc v isolation w t torque downloaded from: http:///
052-6285 rev b 5-2006 APT40GF120JRDQ2 typical performance curves v gs(th) , threshold voltage v ce , collector-to-emitter voltage (v) i c , collector current (a) i c , collector current (a) (normalized) i c, dc collector current(a) v ce , collector-to-emitter voltage (v) v ge , gate-to-emitter voltage (v) i c , collector current (a) 160140 120 100 8060 40 20 0 160140 120 100 8060 40 20 05 4 3 2 1 0 1.151.10 1.05 1.00 0.95 0.90 0.85 0.80 0.75 0.70 0 1 2 3 4 5 6 0 5 10 15 20 0 2 4 6 8 10 12 14 0 50 100 150 200 250 300 350 400 8 10 12 14 16 0 25 50 75 100 125 150 -50 -25 0 25 50 75 100 125 150 -50 -25 0 25 50 75 100 125 150 180160 140 120 100 8060 40 20 0 1614 12 10 86 4 2 0 5 4 3 2 1 0 120100 8060 40 20 0 v ce , collecter-to-emitter voltage (v) v ce , collecter-to-emitter voltage (v) figure 1, output characteristics(t j = 25c) figure 2, output characteristics (t j = 125c) v ge , gate-to-emitter voltage (v) gate charge (nc) figure 3, transfer characteristics figure 4, gate charge v ge , gate-to-emitter voltage (v) t j , junction temperature (c) figure 5, on state voltage vs gate-to- emitter voltage figure 6, on state voltage vs junction tem perature t j , junction temperature (c) t c , case temperature (c) figure 7, threshold voltage vs. junction temperature figure 8, dc collector current vs case temper ature 15v 12v 11v 9v 13v 8v v ge = 15v. 250s pulse test <0.5 % duty cycle t j = 125c t j = 25c t j = -55c v ge = 15v v ce = 960v v ce = 600v v ce = 240v i c = 50a t j = 25c t j = 25c. 250s pulse test <0.5 % duty cycle 10v i c = 100a i c = 50a i c = 25a i c = 100a i c = 50a i c = 25a 250s pulse test<0.5 % duty cycle t j = 125c t j = 25c t j = -55c downloaded from: http:///
052-6285 rev b 5-2006 APT40GF120JRDQ2 v ge =15v,t j =125c v ge =15v,t j =25c v ce = 800v r g = 1.0 ? l = 100h switching energy losses (mj) e on2 , turn on energy loss (mj) t r, rise time (ns) t d(on) , turn-on delay time (ns) switching energy losses (mj) e off , turn off energy loss (mj) t f, fall time (ns) t d (off) , turn-off delay time (ns) i ce , collector to emitter current (a) i ce , collector to emitter current (a) figure 9, turn-on delay time vs collector current figure 10, turn-off delay time vs collector curre nt i ce , collector to emitter current (a) i ce , collector to emitter current (a) figure 11, current rise time vs collector current figure 12, current fall time vs collector curre nt i ce , collector to emitter current (a) i ce , collector to emitter current (a) figure 13, turn-on energy loss vs collector current figure 14, turn off energy loss vs collector current r g , gate resistance (ohms) t j , junction temperature (c) figure 15, switching energy losses vs. gate resistance figure 16, switching energy losses vs junc tion temperature r g = 1.0 ? , l = 100 h, v ce = 800v v ce = 800v t j = 25c or 125c r g = 1.0 ? l = 100h v ge = 15v t j = 25 or 125c,v ge = 15v 10 30 50 70 90 110 10 30 50 70 90 110 10 30 50 70 90 110 10 30 50 70 90 110 10 30 50 70 90 110 10 30 50 70 90 110 0 5 10 15 20 0 25 50 75 100 125 r g = 1.0 ? , l = 100 h, v ce = 800v 3530 25 20 15 10 50 140120 100 8060 40 20 0 2520 15 10 50 3530 25 20 15 10 50 t j = 125c, v ge = 15v t j = 25c, v ge = 15v 350300 250 200 150 100 50 0 120100 8060 40 20 07 6 5 4 3 2 1 0 2520 15 10 50 v ce = 800v v ge = +15v r g = 1.0 ? t j = 125c t j = 25c v ce = 800v v ge = +15v r g = 1.0 ? t j = 125c t j = 25c v ce = 800v v ge = +15v t j = 125c v ce = 800v v ge = +15v r g = 1.0 ? e on2, 100a e off, 100a e on2, 50a e off, 50a e on2, 25a e off, 25a e on2, 100a e off, 100a e on2, 50a e off, 50a e on2, 25a e off, 25a downloaded from: http:///
052-6285 rev b 5-2006 APT40GF120JRDQ2 typical performance curves 0.400.35 0.30 0.25 0.20 0.15 0.10 0.05 0 z jc , thermal impedance (c/w) 0.3 single pulse rectangular pulse duration (seconds) figure 19a, maximum effective transient thermal impedance, junction-to-case vs pulse duration 10 -5 10 -4 10 -3 10 -2 10 -1 1.0 6,0001,000 500100 160140 120 100 8060 40 20 0 c, capacitance ( p f) i c , collector current (a) v ce , collector-to-emitter voltage (volts) v ce , collector to emitter voltage figure 17, capacitance vs collector-to-emitter voltage figure 18,minimim switching safe operatin g area 0 10 20 30 40 50 0 200 400 600 800 1000 1200 1400 figure 19b, transient thermal impedance model 10 20 30 40 50 60 70 80 f max , operating frequency (khz) i c , collector current (a) figure 20, operating frequency vs collector current t j = 125 c d = 50 %v ce = 800v r g = 1.0 ? 8010 51 0.5 0.1 0.05 f max = min (f max , f max2 ) 0.05 f max1 = t d(on) + t r + t d(off) + t f p diss - p cond e on2 + e off f max2 = p diss = t j - t c r jc c res c ies c oes d = 0.9 0.7 peak t j = p dm x z jc + t c duty factor d = t 1 / t 2 t 2 t 1 p dm note: 0.120 0.241 0.0158 0.319 dissipated power (watts) t j (c) t c (c) z ext are the external thermal impedances: case to sink, sink to ambient, etc. set to z ero when modeling only t he case to junction. z ext t c = 75 c t c = 100 c downloaded from: http:///
052-6285 rev b 5-2006 APT40GF120JRDQ2 figure 22, turn-on switching waveforms and de?nitions figure 23, turn-off switching waveforms and de?nitions t j = 125c switching energy 5% 10% t d(on) 90% 10% t r t j = 125c switching energy 0 90% t d(off) 10% t f 90% apt2x31dq120 collector current collector voltage gate voltage collector voltage collector current gate voltage i c a d.u.t. v ce figure 21, inductive switching test circuit v cc downloaded from: http:///
052-6285 rev b 5-2006 APT40GF120JRDQ2 typical performance curves characteristic / test conditionsmaximum average forward current (t c = 89c, duty cycle = 0.5) rms forward current (square wave, 50% duty)non-repetitive forward surge current (t j = 45c, 8.3ms) symbol i f (av) i f (rms) i fsm symbol v f characteristic / test conditions i f = 50a forward voltage i f = 100a i f = 50a, t j = 125c static electrical characteristics unit amps unit volts min typ max 3.06 3.82 2.25 APT40GF120JRDQ2 3039 210 dynamic characteristics maximum ratings all ratings: t c = 25c unless otherwise speci?ed. ultrafast soft recovery anti-parallel diode min typ max - 25 - 300 - 360 - 4 - - 380 - 1700 - 8 - - 160 - 2550 - 28 unit ns nc amps ns nc amps ns nc amps characteristicreverse recovery time reverse recovery time reverse recovery charge maximum reverse recovery current reverse recovery time reverse recovery charge maximum reverse recovery current reverse recovery time reverse recovery charge maximum reverse recovery current symbol t rr t rr q rr i rrm t rr q rr i rrm t rr q rr i rrm test conditions i f = 30a, di f /dt = -200a/ s v r = 800v, t c = 25 c i f = 30a, di f /dt = -200a/ s v r = 800v, t c = 125 c i f = 30a, di f /dt = -1000a/ s v r = 800v, t c = 125 c i f = 1a, di f /dt = -100a/ s, v r = 30v, t j = 25 c z jc , thermal impedance (c/w) 10 -5 10 -4 10 -3 10 -2 10 -1 1.0 rectangular pulse duration (seconds) figure 24a. maximum effective transient thermal impedance, junction-to-case vs. pulse duration 1.201.00 0.80 0.60 0.40 0.20 0 0.5 single pulse 0.1 0.3 0.7 0.05 figure 24b, transient thermal impedance model peak t j = p dm x z jc + t c duty factor d = t 1 / t 2 t 2 t 1 p dm note: d = 0.9 0.291 0.468 0.341 0.00306 0.0463 0.267 dissipated power (watts) t j (c) t c (c) z ext are the external thermal impedances: case to sink, sink to ambient, etc. set to z ero when modeling only t he case to junction. z ext downloaded from: http:///
052-6285 rev b 5-2006 APT40GF120JRDQ2 q rr , reverse recovery charge i f , forward current (nc) (a) i rrm , reverse recovery current t rr , reverse recovery time (a) (ns) t j = 125 c v r = 800v 15a 30a 60a t rr q rr q rr t rr i rrm 450400 350 300 250 200 150 100 50 0 3025 20 15 10 50 duty cycle = 0.5 t j = 175 c 4540 35 30 25 20 15 10 50 1.21.0 0.8 0.6 0.4 0.2 0.0 200150 100 50 0 c j , junction capacitance k f , dynamic parameters (pf) (normalized to 1000a/ s) i f(av) (a) t j , junction temperature ( c) case temperature ( c) figure 29. dynamic parameters vs. junction temperature figure 30. maximum average fo rward current vs. casetemperature v r , reverse voltage (v) figure 31. junction capacitance vs. reverse voltage v f , anode-to-cathode voltage (v) -di f /dt, current rate of change(a/ s) figure 25. forward current vs. forward voltage figure 26. reverse recovery time vs. current rate of change -di f /dt, current rate of change (a/ s) -di f /dt, current rate of change (a/ s) figure 27. reverse recovery charge vs. current rate of change figure 28. reverse recovery cu rrent vs. current rate of change 0 1 2 3 4 5 0 200 400 600 800 1000 1200 0 200 400 600 800 1000 1200 0 200 400 600 800 1000 1200 t j = 175 c t j = -55 c t j = 25 c t j = 125 c t j = 125 c v r = 800v 60a 15a 30a 100 9080 70 60 50 40 30 20 10 0 40003500 3000 2500 2000 1500 1000 500 0 t j = 125 c v r = 800v 60a 30a 15a 0 25 50 75 100 125 150 25 50 75 100 125 150 175 1 10 100 200 downloaded from: http:///
052-6285 rev b 5-2006 APT40GF120JRDQ2 typical performance curves sot-227 (isotop ? ) package outline 31.5 (1.240)31.7 (1.248) dimensions in millimeters and (inches) 7.8 (.307)8.2 (.322) 30.1 (1.185)30.3 (1.193) 38.0 (1.496)38.2 (1.504) 14.9 (.587)15.1 (.594) 11.8 (.463)12.2 (.480) 8.9 (.350)9.6 (.378) hex nut m4 (4 places) 0.75 (.030)0.85 (.033) 12.6 (.496)12.8 (.504) 25.2 (0.992)25.4 (1.000) 1.95 (.077)2.14 (.084) * emitter/anode collector/cathode gate * r = 4.0 (.157) (2 places) 4.0 (.157)4.2 (.165) (2 places) w=4.1 (.161)w=4.3 (.169) h=4.8 (.187)h=4.9 (.193) (4 places) 3.3 (.129)3.6 (.143) * emitter/anode emitter/anode terminals are shorted internally. current handling capability is equal for either emitter/anode terminal. 4 3 1 2 5 5 zero 1 2 3 4 di f /dt - rate of diode current change through zero crossing. i f - forward conduction current i rrm - maximum reverse recovery current. t rr - reverse r ecovery time, measured from zero crossing where diode q rr - area under the curve defined by i rrm and t rr . current goes from positive to negative, to the point at which the straight line through i rrm and 0.25 i rrm passes through zero. figure 32. diode test circuit figure 33, diode reverse recovery waveform and definitions 0.25 i rrm pearson 2878 current transformer di f /dt adjust 30 h d.u.t. +18v 0v v r t rr / q rr waveform apt10035lll isotop ? is a registered trademark of st microelectronics nv. downloaded from: http:///


▲Up To Search▲   

 
Price & Availability of APT40GF120JRDQ2

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X